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SUMMARY  

This paper deals with a new construction method for row-column designs with split 
units for two-factor experiments. The whole plot treatments occur in a repeated Youden 
square. The subplot treatments occur on subplots in a proper incomplete block design. 
The statistical properties of the final design are examined. 
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1. Introduction 

In field experiments it is quite common to use a row-column design in order to 
eliminate real or potential orthogonally disposed heterogeneity of the experi-
mental material. Then a Latin square is the appropriate design. This design pos-
sesses many desirable and optimal statistical properties. In the Latin square 
every treatment occurs once in each row and once in each column. The disad-
vantage of this design is the large number of experimental units. We can reduce 
the number of experimental units by using a design in which every treatment 
occurs once in each row (or each column) only. Then a Youden square is the 
proper design. This design possesses many desirable statistical properties (see 
e.g. Cox, 1958). In a Youden square the treatments occur in completely 
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randomized blocks with respect to rows (or columns) while with respect to col-
umns (or rows) they occur in a symmetrical balanced incomplete block design.  

2. Construction method 

Let us assume that the experimental material is divided into R superblocks. 

Additionally, each superblock constitutes a row-column design with q rows and 

a columns. On each unit of the row-column design that is treated as a whole 

plot, the levels of a factor A ) ..., , ,( 21 aAAA  are arranged. These levels will be 

called whole plot treatments. Additionally, each whole plot is divided into k 

small plots called subplots, where the levels of the second factor B 

) ..., , ,( 21 tBBB  are arranged. The levels are then called subplot treatments. 

In this paper we will examine the statistical properties of a two-factor design 

in which each superblock has a Youden square structure with q rows and a 

columns. Moreover, let us assume that the subdesign of the Youden square with 

respect to columns is a symmetrical balanced incomplete block design (BIBD) 

with parameters BIBD( AAAAA ,k,r,b,v λ    ). Then the following relationships 

hold: qrk AA == , avb AA ==  and )1/()1( −−= aqqAλ . 

Let AN  be the whole plot treatment × column incidence matrix in the 

Youden square. Then the so-called C-matrix for the Youden square subdesign 

with respect to columns is equal to '1
AAAAA kr NNIC −−= . Connected with this 

matrix is the so-called efficiency factor, equal to ( ) ( )11 −−= aq/qaAε  with 

multiplicity 1−= aAρ  (cf. Caliński, Kageyama, 2000). 

Let BD (t, b, k, BN ) denote any proper block design in which t subplot 

treatments occur on b blocks of size k according to the incidence matrix BN , 

and let Br  be the vector of treatment replications ( 1Nr BB = ), where 1 stands 

for the vector of ones and bknB = . 

Let '1
BBBB k NNrC −−= δ  be the C-matrix of the block design BD (t, b, k, 

BN ) and let hξ  be an eigenvalue of the matrix BC  corresponding to an 

eigenvector hc  w.r.t. δ
Br , i.e. let hBhhB crcC δξ= , h = 1, 2, ..., t. The 

eigenvectors can be chosen to be δ
Br -orthonormal in pairs, i.e. 1=′ iBi crc δ and 
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0=′ hBi crc δ for i ≠ h; i, h = 1, 2,..., t. Since 01C =B  , the last eigenvector may 

be chosen as 1c 21−= Bt n . 

Let us note that in the incomplete case of the design as is considered here, 

only a few of the subplot treatments occur on subplots within whole plots. In 

this work we assume that the contents of whole plots within each superblock are 

all the same with respect to the subplot treatments, as will be seen in the 

example in Section 3. Hence we have bR = . 

The arrangement of whole plot and subplot treatments on the experimental 

material is based on a proper scheme of randomizations. This scheme includes 

randomizations of the superblocks, the rows (columns), the columns (rows) and 

the subplots. As a result of such randomizations and some additional assume-

ptions, we can describe the observations by a linear mixed model with random 

superblock, row and column effects and fixed treatment combination effects (cf. 

Kachlicka, Mejza, 1996). The applied scheme of randomizations and the struc-

ture of the experimental material lead to a linear model of observations, posse-

ssing an orthogonal block structure. Then the overall analysis can be split into 

so-called strata, as in multistratum experiments. In our case we have five strata, 

i.e. the inter-superblock stratum, inter-column stratum, inter-row stratum, inter-

whole plot stratum and finally the inter-subplot stratum (cf. Kachlicka, Mejza, 

1996). The present work constitutes an important supplement to the aforemen-

tioned paper. In that paper we give a method for analyzing a two-factor 

experiment carried out on a design in which whole plot treatments occur in 

repeated row-column designs, while the subplot treatments occur in complete or 

incomplete randomized block designs, where whole plots are treated as blocks. 

However, we continue to lack construction methods for the considered class of 

designs. The papers Kachlicka, Mejza (2004), Kachlicka et al. (2004) and 

Mejza et al. (2009) examine the statistical properties of the design in which 

whole plot treatments occur in a Youden square and subplot treatments occur in 

a balanced incomplete block design (BIBD) or in a group-divisible block design 

with two efficiency classes (GD(2)BDs). The BIBD and GD(2)BDs are very 

useful in biological and agricultural experiments, and hence they are often used 
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to generate new more complex designs with split units (cf. Mejza, Mejza, 1996, 

Hering, Mejza, 2002, Kachlicka, Mejza, 2003, Ambroży, Mejza, 2004, 2006, 

Ozawa et al., 2004, Kuriki et al., 2005, Ambroży et al., 2006, Mejza, Ambroży, 

2007).  

In this paper we examine the statistical properties of a design in which, 

instead of a BIBD or GD(2)BDs for subplot treatments, any proper incomplete 

block design is used. In this way, after applying the proper scheme of 

randomization, the final design also has an orthogonal block structure. The 

treatment combinations will be considered as treatments with the actually used 

lexicographical order of combinations hsBA  (s = 1, 2,…, a; h = 1, 2,…, t) and 

the usual expression of the treatment effect as the sum of the factor effects and 

the interaction effects. Let v = at denote the number of treatments. 

In the considered design we have 5 main strata in which the statistical 

analyses may be performed. They are connected with the algebraic properties of 

stratum information matrices for the treatment combinations, fA , 

5,4,3,2,1=f , with the following forms: 

( ) ( ) ( )BBBBBa nb
a

q
RRqak rrNNJrrNNA ′−⊗=−= −−− 1'1'

00
1

1 ' , 

( ) ( ) 0'
00

'
11
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BBaq rrJrr ′⊗= 2' , δδ
Baq rIr ⊗= ,

 '2'
00 BBaq NNJNN ⊗= , ''

11 BBaq NNJNN ⊗= ,

 '''
22 BBAA NNNNNN ⊗= , ''

33 BBaq NNINN ⊗= , 

( ) ( )
aaaAaAAAA a

qq

a

qaq
r JIJINN

1
1

1
)('

−
−+

−
−=+−= λλ . 

The matrix tJ  denotes the tt ×  matrix of ones; 0N , 1N , 2N , 3N  are the 

incidence matrices: treatments vs. superblocks, treatments vs. columns, 

treatments vs. rows and treatments vs. whole plots, respectively; r denotes the 

vector of treatment replicates; and δr  stands for the diagonal matrix with 

diagonal elements equal to the numbers of treatment replicates. 

A desirable statistical property examined here is called general balance (cf. 

Bailey, 1994). A design is generally balanced if (cf. Mejza, 1992) the 

information matrices satisfy the conditions: 

ffff ArAArA δδ −
′′

− = ,   f ≠ f’,  f, f’ = 1, 2, 3, 4, 5. 

From the structure of the information matrices fA  we notice that the 

considered design is generally balanced.  

Let jp  define contrasts of the form τp j′ , j =1, 2,..., v-1, in the final design. 

Let us note that the structures of the information matrices fA  are based on the 

Kronecker product of submatrices. Hence the vectors jp  defining contrasts can 

be expressed by the Kronecker product of some contrasts corresponding to the 

eigenvectors of submatrices AC  and BC  for the factors A and B respectively. 

Then τp j′  are called the basic contrasts (cf. Pearce et al., 1974). Next, the 

eigenvalues of the information matrices fA  can be identified as stratum 

efficiency factors of the design with respect to the j-th basic contrast in the f-th 

stratum,  f = 1, 2, 3, 4, 5,  j =1, 2,..., v-1 (cf. Houtman, Speed, 1983).  

The stratum efficiency factors measure the amount of information that is 

included in the strata for estimating the treatment contrast. A stratum efficiency 

factor equal to 1 means that the particular contrast is estimable only in that 

stratum and with full efficiency. A stratum efficiency factor equal to 0 means 
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that the contrast is not estimable in that stratum (it is confounded). The sum of 

the stratum efficiency factors for one treatment contrast is equal to 1. In the case 

of the design under consideration, the stratum efficiency factors, being functions 

of Aε  and hξ , h =  1, 2,..., t-1, are given in Table 1. 

Remarks: 

• In the first stratum the contrasts among the subplot treatment effects are 

estimated only with respective efficiency factors of hξ−1 , h =  1, 2,..., t-1. 

• In the second stratum no contrast is estimable. 

• In the third stratum, the contrasts among the whole plot treatment effects are 

estimated with the efficiency factor Aε−1 , and the interaction contrasts are 

estimated with respective efficiency factors of )1)(1( hA ξε −− , h =  1,  

2,..., t-1.  

• In the fourth stratum all contrasts among the whole plot treatment effects are 

estimated with the efficiency factor Aε , and all interaction contrasts are 

estimated with respective efficiency factors of )1( hA ξε − , h =  1, 2,..., t-1.  

• In the fifth stratum there are all contrasts among the subplot treatment 

effects and interaction contrasts which are estimated with respective 

efficiency factors of hξ , where h =  1, 2,..., t-1.  
 

Table 1. Stratum efficiency factors for the considered design 

Strata 
Type  

of contrasts 
Number  

of contrasts 
I II  III IV V 

A a-1 0 0 Aε−1  Aε  0 

Bh 

h =  1, 2,..., t-1 
1 hξ−1  0 0 0 hξ  

(A×B)h 
h =  1, 2,..., t-1 

a-1 0 0 )1)(1( hA ξε −−  )1( hA ξε −  hξ  
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3. Application 

Let us consider a two-factor experiment in which we have four whole plot 

treatments (a=4), and three subplot treatments (t=3). The experiment was set up 

in four (R=4) superblocks, each divided into three (q=3) rows and four (a=4) 

columns. Additionally, each whole plot is divided into three (k=3) subplots. The 

arrangement of whole plots in a Youden square is the following: 

 

A2 A4 A3 A1 
A3 A1 A4 A2 
 A4 A2 A1 A3 

The whole plot treatments are arranged in a BIBD on columns with the 
incidence matrix : 



















=

0111

1101

1011

1110

AN . 

The parameters of this subdesign with respect to the whole plot treatments are 

the following: 3=== qrk AA , 4=== avb AA , 2)1/()1( =−−= aqqAλ , 

( ) ( ) 9/81/1 =−−= aqqaAε , 3=Aρ . 

The subplot treatments occur in an efficiency-balanced block design with 

unequal numbers of replicates. The arrangement of the subplot treatments in 

superblocks can be schematically represented as follows:  

 
B2 B1 B1 B1 
B3 B2 B3 B2 
B3 B3 B3 B3 

In each superblock the subplot treatments are arranged on the subplots within 
the whole plots according to the incidence matrix  

















=
1212

1011

1110

BN .  
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Hence we have: 3== tvB , 4== BbR , 3=k , ]6 ,3  ,3[ ′=Br , 9/8=hξ ,  
h = 1, 2, 03 =ξ . The arrangement of subplot and whole plot treatments in 
superblocks is given in Table 2.  
 
Table 2. Arrangement of the whole plot and subplot treatments in superblocks 

(before randomization) 

Superblock I 
A2 A4 A3 A1 

B2 B3 B3 B2 B3 B3 B2 B3 B3 B2 B3 B3 
A3 A1 A4 A2 

B2 B3 B3 B2 B3 B3 B2 B3 B3 B2 B3 B3 
A4 A2 A1 A3 

B2 B3 B3 B2 B3 B3 B2 B3 B3 B2 B3 B3 
 

Superblock II 
A2 A4 A3 A1 

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 
A3 A1 A4 A2 

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 
A4 A2 A1 A3 

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 
 

Superblock III 
A2 A4 A3 A1 

B1 B3 B3 B1 B3 B3 B1 B3 B3 B1 B3 B3 
A3 A1 A4 A2 

B1 B3 B3 B1 B3 B3 B1 B3 B3 B1 B3 B3 
A4 A2 A1 A3 

B1 B3 B3 B1 B3 B3 B1 B3 B3 B1 B3 B3 
 

Superblock IV 
A2 A4 A3 A1 

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 
A3 A1 A4 A2 

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 
A4 A2 A1 A3 

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 

 
The stratum efficiency factors for the above design are given in Table 3. 
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Table 3. Stratum efficiency factors in the example 

Strata 
Type  

of contrasts 
Number  

of contrasts 
I II  III IV V 

A 3 0 0 1/9 8/9 0 

Bh 
h = 1, 2 

1 1/9 0 0 0 8/9 

A×Bh 
h = 1, 2 

3 0 0 1/81 8/81 8/9 

4. Final remarks.  

In the example incomplete block subdesigns for the whole plot treatments 

and the subplot treatments are efficiency-balanced with the same efficiency 

factors. This means that in the final two-factor design, all the basic contrasts 

among the main effects of both factors A and B are estimated with the same 

efficiency factors but in different strata. In practice we can use any proper block 

design for the subplot treatments instead of an efficiency-balanced block design. 

In particular we can find a design for the subplot treatments satisfying all the 

experimenter’s requirements concerning statistical properties, especially in the 

area of efficiency. 
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